Artificial Cartilage…One Step Closer

 

dukeengineer

http://phys.org/news/2013-12-duke-artificial-cartilage.html

Two engineers from Duke University have come together to build a cartilage substrate from synthetic materials that is the closest production so far that resembles natural cartilage, and outperforms previous synthetic cartilage attempts.  Being able to develop these synetheic cartilage scaffolds will be used in animal models in 2014, which is the next step before this candidate and others can be attempted in humans. Nonetheless, synethic cartilage is a vital aspect of scientific research and development, for without cartilage the human body cannot function nearly as well, if hardly at all. 

Cartilage in the body wears down over time considerably, and is suspectible to tearing and breaking.  Being able to replace old cartilage parts with synethic and bio-synethic designs can help many humans live longer healthier lives, essentially extending the peak years of flexibility, agility, and overall ability to move as if you have more youthful cartilage in the body.  Funding for these types of research focuses need to continue to rise, while also shifting the focus slightly to understand the processes of aging itself and how those processes effect the lifespan and pliability of the cartilage within our bodies.  One of the engineers in the project had this to say, “It (the designed synthetic cartilage) has all the mechanical properties of native cartilage and can withstand wear and tear without fracturing.  From a mechanical standpoint, this technology remedies the issues that other types of synthetic cartilage have had,” says Zhao, founder of Duke’s Soft Active Materials (SAMs) Laboratory. “It’s a very promising candidate for artificial cartilage in the future.

knee-cartilage_0

Let’s continue pushing the boundaries of the engineering of science, especially pertaining to our bodies.  The more parts of our bodies we can replace, and understand the aging process, the longer, and healthier our lives will become.  The idea is just not to live longer, but to “extend” the peak years of health well beyond the normal ranges today.  So for instance most of us consider the ages of 15-50ish as the peak years of performance and vitality. Even with proper training and consistent tough exercise, meditation and proper diet, most will still begin to age considerably post 50 years and may extend our peak years a few more, being diligent.  However, with the advent of the converging technologies of biotechnology, nanotechnology, information technology and cognitive science, we will have decades worth of research on replacing body parts, and extending human lifespan, and in particular, the peak years of life.  The natural evolution of our species will take us to a new level of life extension.  The first human in recent history to live to 150 years has already been born.

Transhumanist Librarian will be back soon with another article.

Advertisements

Robot Competition…To Save Us From Disaster

DARPA, the all encompasing technological agency of the United States has come out with another robot, called Valkyrie.  DARPA is the sponsor for the competition, with their own entry Valkyrie among 17 other competitor entries.  The event is scheduled for December 20, and 21 in Florida.

valkyriestep

The robots, and their capabilities will be tested on their ability to provide assistance in future natural and man-made disasters.  The entry by NASA’s Johnson Space Center is Valkyrie, and honestly strikes quite a presence once you look at it.  First of all the robot is 6’2″, which is a perfect height for assistance in natural disasters because the content of the body will be able to withstand the weather, due to more surface area and independent limb movement.  The total weight of Valkyrie is 262 pounds, which also allows for complete movement in tough weather.  It has seven degree of freedom arms, with actuated wrists, and six degree of freedom hands.  This means that the range of motion for this particular robot is some of the largest range of motion every built for a single autonomous robot.

The goal of the Robot Challenge is to present robots “That demonstrates critical improvements in what robots can do to help out in disaster relief efforts, when human intervention is unsafe and time is of the essence, such as nuclear power plant disasters, oil spills, and wildfires. That means the robots who compete need to be agile and responsive to move through disaster zones and do needed rescue tasks. In the words of DARPA, the Challenge itself was designed “to catalyze the robotics community to help mitigate the effects of future disasters”

Valkyrie took nine months to build, working 22 hours a day! A pretty awesome feat considering the amount of technology, and converging technologies involved to create a robot of this magnitude.  However, we still have considerable room to grow in terms of engineering and nanotechnology that is specific to building robots for these specific purposes.  The robots in the challenge will need to prove the extent of their capabilities such as walking over uneven terrain, climbing a ladder and using tools.

The design team took several important functions of the body and made sure that parts were easily replaceable.  For example, the battery in the backpack of the robot can be replaced very easily, within two minutes.  They also designed the robot’s limbs as removable parts that can be swapped out for new parts in minutes. What’s more, they designed the left and right arms to be identical in construction, so that right and left arms can be swapped if needed.

robotics_135_435_a

For the competition itself, the robots will be graded on how well they can complete designated tasks the kinds that first responders would face in actual natural and man-made disasters.  Perhaps Valkyrie will be the robot in the challenge with the highest amount of embedded intelligence.  Not surprisingly, Valkyrie will enter the competition with lots of onboard computing. Sensors are generously spread all over Valkyrie. There are cameras and LIDAR (a remote sensing method, LIDAR stands for Light Detection and Ranging) in the head, cameras in the abdomen, forearms, knees and feet. Valkyrie’s clothing consists of panels of fabric-wrapped foam armor which can protect Valkyrie from falls and impacts. The clothing was built on site by a dedicated design staff.

Only a few years from now these robots will be working with first responder teams in response to disasters while also being sent to Mars first to help setup the initial infrastrucuture for colonization, while then working with humans collaboratively when humans arrive a few years later.  Each year, the price of building robots comes down, thus why there are more and more robot competitions, and particularly more competitions for the younger generation.  We must build robots to replace some human work, and also build specific robots to supplement and lead our physical capabilities, such as this article describes.  As humans we will always lead ourselves to danger in some way.  Having robots by our side and integrated robotic technologies integrated into our bodies, will allow us to have less death and destruction from a human loss standpoint, and will allow more of us to live through disasters, both natural and man-made.  As long as we continue to fund the converging technologies of biotechnology, cognitive science, nanotechnology, and engineering.

Robots will help us live through disaster, now and in the near-future.

Robots Helping Us Live Longer

VGo-portrait-web

Not only are robots an excellent opportunity for humans to extend their knowledge and practical uses of science, engineering, information technology, and cognitive science, but they also currently and in the near-future will help us to live longer, healthier lives.

http://phys.org/news/2013-12-robot-doors-isolated.html

In this article, by the University of Exeter helps provide several insightful examples of how robots can help us.  The article specifically focuses on the uses of robots to help fill spots where we are expected to be physically, but cannot due to any number of variables, including sickness, physical impairment, prior demands, or just overall too busy.

In a research project funded by the university titled, “Being There: Humans and Robots in Public Spaces”, helps bridge the gap of possible uses of robots for when we physically cannot be present.  The focus of the study is primarily, “To look at the social and technological aspects of being able to appear in public in proxy forms, via a range of advanced robotics platforms”

artikkelbilde_thumb_760

For transhumanists and those interested in using technology to better our lives and our bodies, this is excellent news.  The project overall aims to enhance the public realm where people can express themselves in public with full equality and privacy, which is most important.  Professor Mark Levine of the University of Exeter has this to say, “Being able to interact with others in plays an important role in the well-being of individuals and societies. Sadly, many people are unable to do this – because they are ill, housebound or unable to travel. However, if a robot proxy can act for them – and can transmit back the full experience of being with others – we can help to reduce social isolation and increase civic participation

This aspect of the study and the use of robots in general should definitely be researched and studied even further.  Especially if more humanoid type robots can be implemented, the relaying of facts and experiences to the host human will become more meaningful and more productive. Perhaps we could have multiple robot proxys and can be present via those proxy’s in various physical locations, further enhancing our production capabilities. Opening up the public sphere to the use of robots proxys is vital if we are opening up ourselves to integration of technology into our bodies and our behaviors and decision-making.

If we are to use robot proxys to replace our physical representations both in public and family events, it will be paramount for us to use this technology in a responsible way.  Designing articificial intelligence following the three rules of Asimov’s Robots will help insure this.  Lastly, intergrating robots into our daily social interaction, will aid in our social development from a health standpoint, and will lead us to live longer, more healthful lives.  Simple social interaction, via technology and robots.  Perfect!

Transhumanist Librarian will be back with another article soon!